YOUR BROWSER IS OUT-OF-DATE.

We have detected that you are using an outdated browser. Our service may not work properly for you. We recommend upgrading or switching to another browser.

Sign in

 

Faculty of Computer Science and Management

Prof. Teresa Orłowska-Kowalska, DSc, PhD, Eng

Email: teresa.orlowska-kowalska@pwr.edu.pl

Unit: Faculty of Electrical Engineering » Department of Electrical Machines, Drives and Measurements

Teresa Orłowska-Kowalskaul. Smoluchowskiego 19, 50-372 Wrocław
building A-10, room 320 (3rd floor)
phone  +48 71 320 2640

secretariat: phone +48 71 320 3467

Office hours

  • according to the information at:
  • http://weny.pwr.edu.pl/studenci/konsultacje/pracownikow-katedry-w5-k3

Research fields

  • Controlled electrical drives, artificial intelligence; especially:
    • state variable estimation for sensorless AC drives – sensorless control,
    • vector control methods for AC motors (induction motors and PMSM),
    • variable-Structure-Control theory application for state variables control and estimation in electrical drives,
    • neural networks application for state variables control and estimation in electrical drives, including drives with multiple elastic couplings,
    • methods for fault detection, localization and compensation in converter-fed drive systems (Fault Tolerant Control).

Recent papers

2021

  • Skowron M., Orłowska-Kowalska T., Kowalski C.T., Application of simplified convolutional neural networks for initial stator winding fault detection of the PMSM drive using different raw signal data. IET Electric Power Applications. 2021, s. 1-15 doi: 10.1049/elp2.12066
  • Krzysztofiak M., Skowron M., Orlowska-Kowalska T., Analysis of the impact of stator inter-turn short circuits on PMSM drive with scalar and vector control, Energies. 2021, 14, no. 1, art. 153, 1-20 doi: 10.3390/en14010153
  • Ewert P., Orlowska-Kowalska T., Jankowska K., Effectiveness analysis of PMSM motor rolling bearing fault detectors based on vibration analysis and shallow neural networks. Energies. 2021, vol. 14, no. 3, art. 712, 1-24 doi: 10.3390/en14030712

2020

  • Orlowska-Kowalska T., Korzonek M., Tarchala G., Performance analysis of speed-sesorless induction motor drive using discrete current-error based MRAS estimators, Energies, 2020, 13, 2595,1-23 doi: 10.3390/en13102595
  • Korzonek M., Tarchala G., Orlowska-Kowalska T., Simple Stability Enhancement Method for Stator Current Error-based Speed Estimator MRASCC for Induction Motor Drive, IEEE Trans. Industrial Electronics, 2020, 67, no.7, pp,5854-5866; doi: 10.1109/TIE.2019.2960726
  • Tarchała G., Orlowska-Kowalska T., Discrete sliding-mode speed control of induction motor using time-varying switching line, Electronics 2020, 9, 185, pp.1-18, doi:10.3390/electronics9010185
  • Skowron M., Orlowska-Kowalska T., Wolkiewicz M., Kowalski C.T., Convolutional Neural Network Based Incipient Stator Fault Detection of Inverter-Fed Induction Motor Using Stator Current Measurement Data, Energies 2020, 13, 1475; doi:10.3390/en13061475
  • Ewert P, Kowalski C.T., Orlowska-Kowalska T., Low-cost monitoring and diagnosis system for rolling bearing faults of the induction motor based on neural network approach; Electronics 2020, 9(9), 1334; doi: 3390/electronics9091334
  • Skowron M., Orłowska-Kowalska T., Efficiency of cascade-connected neural networks in detecting initial faults to induction motor drive electric windings; Electronics 2020, 9(8), 1314 doi:10.3390/electronics9081314 

2019

  • Orlowska-Kowalska T., Korzonek M., Tarchala G., Stability Improvement Methods of the Adaptive Full-Order Observer for Sensorless Induction Motor Drive – Comparative Study, IEEE Trans. Industrial Informatics, 2019, vol. 15, no. 11, pp. 6144-6126
  • Korzonek M., Tarchała G., Orłowska-Kowalska T., A review on MRAS-type speed estimators for reliable and efficient induction motor drives, ISA Transactions 2019, 93, no. 10, pp. 1–13
  • Adamczyk M., Orłowska-Kowalska T., Virtual Current Sensor in the Fault-Tolerant Field-Oriented Control Structure of an Induction Motor Drive, Sensors, 2019, vol. 19, 22, 4979, pp. 1-15
  • Skowron M., Wolkiewicz M., Kowalski C.T. Orlowska-KowalskaT., Effectiveness of selected neural network structures based on axial flux analysis in stator and rotor winding incipient fault detection of inverter-fed induction motors, Energies, 2019, vol. 12, no. 12, art.2392, s. 1-20
  • Skowron, Wolkiewicz M., Orlowska-Kowalska T., Kowalski C. Application of self-organizing neural networks to electrical fault classification in induction motors. Applied Sciences 2019, vol. 9, no. 4, art. 616, s. 1-22.

2018

  • Tarchala G., Orlowska-Kowalska T., Equivalent-Signal Based Sliding Mode Speed MRAS-type Estimator for Induction Motor Drive, IEEE Trans. Industrial Electronics, 2018, 65, no 9, pp. 6936 - 6947. 2017

2017

  • Orlowska-Kowalska T., Korzonek M., Tarchala G., Stability Analysis of Selected Speed Estimators for Induction Motor Drive in Regenerating Mode - a Comparative Study, IEEE Trans. Industrial Electronics, 2017, 64, no.10, 7721-7730.
  • Sobański P., Orłowska-Kowalska T., Faults diagnosis and control in a low-cost fault-tolerant induction motor drive system, Mathematics and Computers in Simulation, vol. 131, January 2017, pp. 217-233.

2016

  • Wolkiewicz M, Tarchala G., Orlowska-Kowalska T., Kowalski C.T., On-line stator inter-turn short circuits monitoring in the DFOC induction motor .drive, IEEE Trans. Industrial Electronics, 2016, vol. 63, no.4, 2517-2528.

Papers in DONA database

Politechnika Wrocławska © 2024